Sunday, April 21, 2013

Magnesium

Magnesium is a chemical element with the symbol "Mg" and atomic number 12. Its common oxidation number is +2. It is an alkaline earth metal and the eighth most abundant element in the Earth's crust and ninth in the known universe as a whole. Magnesium is the fourth most common element in the Earth as a whole (behind iron, oxygen and silicon), making up 13% of the planet's mass and a large fraction of the planet's mantle. The relative abundance of magnesium is related to the fact that it easily builds up in supernova stars from a sequential addition of three helium nuclei to carbon (which in turn is made from three helium nuclei). Due to magnesium ion's high solubility in water, it is the third most abundant element dissolved in seawater.
The free element (metal) is not found naturally on Earth, as it is highly reactive (though once produced, it is coated in a thin layer of oxide (see passivation), which partly masks this reactivity). The free metal burns with a characteristic brilliant white light, making it a useful ingredient in flares. The metal is now mainly obtained by electrolysis of magnesium salts obtained from brine. Commercially, the chief use for the metal is as an alloying agent to make aluminium-magnesium alloys, sometimes called magnalium or magnelium. Since magnesium is less dense than aluminium, these alloys are prized for their relative lightness and strength.
In human biology, magnesium is the eleventh most abundant element by mass in the human body. Its ions are essential to all living cells, where they play a major role in manipulating important biological poly-phosphate compounds like ATPDNA, and RNA. Hundreds of enzymes thus require magnesium ions to function. Magnesium compounds are used medicinally as common laxatives, antacids (e.g., milk of magnesia), and in a number of situations where stabilization of abnormal nerve excitation and blood vessel spasm is required (e.g., to treat eclampsia). Magnesium ions are sour to the taste, and in low concentrations they help to impart a natural tartness to fresh mineral waters.


Sodium

Sodium is a chemical element with the symbol "Na"  in the periodic table and atomic number 11. It is a soft, silvery-white, highly reactive metal and is a member of the alkali metals; its only stable isotope is 23 Na. The free metal does not occur in nature, but instead must be prepared from its compounds; it was first isolated by Humphry Davy in 1807 by the electrolysis of sodium hydroxide. Sodium is the sixth most abundant element in the Earth's crust, and exists in numerous minerals such as field sparssodalite and rock salt. Many salts of sodium are highly water-soluble, and their sodium has been leached by the action of water so that chloride and sodium are the most common dissolved elements by weight in the Earth's bodies of oceanic water.
Many sodium compounds are useful, such as sodium hydroxide (lye) for soap making, and sodium chloride for use as a deicing agent and a nutrient (edible salt). Sodium is an essential element for all animals and some plants. In animals, sodium ions are used against potassium ions to build up charges on cell membranes, allowing transmission of nerve impulses when the charge is dissipated. The consequent need of animals for sodium causes it to be classified as a dietary inorganic macro-mineral.


Neon

Neon is a chemical element with symbol "Ne" and atomic number 10. It is in group 18 (noble gases) of the periodic table. Neon is a colorless, odorless, atomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypton and xenon) in 1898 as one of the three residual rare inert elements remaining in dry air, after nitrogen, oxygen, argon and carbon dioxide are removed. Neon was the second of these three rare gases to be discovered, and was immediately recognized as a new element from its bright red emission spectrum. The name neon is derived from the Greek word νέον, neuter singular form of νέος [neos], meaning new. Neon is chemically inert and forms no uncharged chemical compounds.
During cosmic nucleogenesis of the elements, large amounts of neon are built up from the alpha-capture fusion process in stars. Although neon is a very common element in the universe and solar system (it is fifth in cosmic abundance after hydrogen, helium, oxygen and carbon), it is very rare on Earth. It composes about 18.2 ppm of air by volume (this is about the same as the molecular or mole fraction), and a smaller fraction in the crust. The reason for neon's relative scarcity on Earth and the inner (terrestrial) planets, is that neon forms no compounds to fix it to solids, and is highly volatile, therefore escaping from the planetesimals under the warmth of the newly-ignited Sun in the early Solar System. Even the atmosphere of Jupiter is somewhat depleted of neon, presumably for this reason.
Neon gives a distinct reddish-orange glow when used in either low-voltage neon glow lamps or in high-voltage discharge tubes or neon advertising signs. The red emission line from neon is also responsible for the well known red light of helium-neon lasers. Neon is used in a few plasma tube and refrigerant applications but has few other commercial uses. It is commercially extracted by the fractional distillation of liquid air. It is considerably more expensive than helium, since air is its only source.


Fluorine

Fluorine "F" is the chemical element with atomic number 9. At standard pressure and temperature, fluorine is a pale yellow gas composed of diatomic molecules, F2. Fluorine is the most electronegative element and is extremely reactive, requiring great care in handling. It has a single stable isotope, fluorine-19.
In stars, fluorine is rare compared to other light elements. In Earth's crust, fluorine is the thirteenth most abundant element. Fluorine's most important mineral, fluorite, was first formally described in 1530, in the context of smelting. The mineral's name derives from the Latin verb " fluo", which means "flow", because fluorite was added to metal ores to lower their melting points. Suggested as a chemical element in 1811, fluorine was named after the source mineral, but resisted many attempts to isolate the element. In 1886, French chemist Henri Moissan succeeded. His method of electrolysis remains the industrial production method for fluorine gas. The main use of elemental fluorine, uranium enrichment, was developed during the Manhattan Project.
Because of the difficulty in making elemental fluorine, most fluorine used in commerce is never converted to free fluorine. Instead, hydrofluoric acid is the key intermediate for the $16 billion per year global fluorite-chemical industry. The fluorides of low charged metals are ionic compounds (salts); those of high charged metals are volatile molecular compounds. The largest uses of inorganic fluorides are steel making and aluminium refining.
Organic fluorine compounds tend to have high chemical and thermal stability. The largest commercial use is in refrigerant gases. Although traditional chlorofluorocarbons (CFCs) are widely banned, the replacement gases still contain fluorine. Polytetrafluoroethylene (Teflon) is the most important fluoropolymer and is used in electrical insulation, chemical-resistant parts, stadium roofs, and cookware. A growing fraction of modern pharmaceuticals contain fluorine; Lipitor and Prozac are prominent examples. While a few plants and bacteria synthesize organofluorine poisons, fluorine has no metabolic role in mammals. The fluoride ion, when directly applied to teeth, reduces decay and for this reason is used in toothpaste and municipal water fluoridation.



Tuesday, April 16, 2013

Nitrogen

Nitrogen is a chemical element with symbol "N" and atomic number 7. Elemental nitrogen is a colorless, odorless, tasteless, and mostly inert di-atomic gas at standard conditions, constituting 78.09% by volume of Earth's atmosphere. The element nitrogen was discovered as a separable component of air, by Scottish physician Daniel Rutherford, in 1772. It belongs to the pnictogen family.
Nitrogen is a common element in the universe, estimated at about seventh in total abundance in our galaxy and the Solar System. It is synthesized by fusion of carbon and hydrogen in supernovas. Due to the volatility of elemental nitrogen and its common compounds with hydrogen and oxygen, nitrogen is far less common on the rocky planets of the inner Solar System, and it is a relatively rare element on Earth as a whole. However, as on Earth, nitrogen and its compounds occur commonly as gases in the atmospheres of planets and moons that have atmospheres.
Many industrially important compounds, such as ammonia, nitric acid, organic nitrates ( propellants and explosives), and cyanides, contain nitrogen. The extremely strong bond in elemental nitrogen dominates nitrogen chemistry, causing difficulty for both organisms and industry in converting the N2 into useful compounds, but at the same time causing release of large amounts of often useful energy when the compounds burn, explode, or decay back into nitrogen gas. Synthetically-produced ammonia and nitrates are key industrial fertilizers and fertilizer nitrates are key pollutants in causing the eutrophication of water systems.
Outside their major uses as fertilizers and energy-stores, nitrogen compounds are versatile organics. Nitrogen is part of materials as diverse as Kevlar fabric and cyanoacrylate "super" glue. Nitrogen is a constituent of molecules in every major pharmacological drug class, including the antibiotics. Many drugs are mimics or pro-drugs of natural nitrogen-containing signal molecules: for example, the organic nitrates nitroglycerin and nitroprusside control blood pressure by being metabolized to natural nitric oxide. Plant alkaloids (often defense chemicals) contain nitrogen by definition, and thus many notable nitrogen-containing drugs, such as caffeine and morphine are either alkaloids or synthetic mimics that act (as many plant alkaloids do) upon receptors of animal neurotransmitters (for example, synthetic amphetamines).
Nitrogen occurs in all organisms, primarily in amino acids (and thus proteins) and also in the nucleic acids (DNA and RNA). The human body contains about 3% by weight of nitrogen, the fourth most abundant element in the body after oxygen, carbon, and hydrogen. The nitrogen cycle describes movement of the element from the air, into the biosphere and organic compounds, then back into the atmosphere.


Saturday, April 13, 2013

Neptune

Neptune is the eighth and farthest planet from the Sun in the Solar System. It is the fourth-largest planet by diameter and the third-largest by mass. Neptune is 17 times the mass of Earth and is somewhat more massive than its near-twin Uranus, which is 15 times the mass of Earth but not as dense. On average, Neptune orbits the Sun at a distance of 30.1 AU, approximately 30 times the Earth–Sun distance. Named for The Roman god of the sea, its astronomical symbol is , a stylised version of the god Neptune's trident.
Neptune was the first planet found by mathematical prediction rather than by empiri cal observation. Unexpected changes in the orbit of Uranus led Alexis Bouvard to deduce that its orbit was subject to gravitational perturbation by an unknown planet. Neptune was subsequently observed on 23 September 1846  by Johann Galle within a degree of the position predicted by Urbain Le Verrier, and its largest moon, Triton, was discovered shortly thereafter, though none of the planet's remaining 12 moons were located telescopically until the 20th century. Neptune has been visited by only one spacecraft, Voyager 2, which flew by the planet on 25 August 1989.
Neptune is similar in composition to Uranus, and both have compositions which differ from those of the larger gas giantsJupiter, and Saturn. Neptune's atmosphere, while similar to Jupiter's and Saturn's in that it is composed primarily of hydrogen and helium, along with traces of hydrocarbons and possibly nitrogen, contains a higher proportion of "ices" such as water, ammonia, and methane. Astronomers sometimes categorize Uranus and Neptune as "ice giants" in order to emphasis these distinctions. The interior of Neptune, like that of Uranus, is primarily composed of ices and rock. It is possible that the core has a solid surface, but the temperature would be thousands of degrees and the atmospheric pressure crushing. Traces of methane in the outermost regions in part account for the planet's blue appearance.
In contrast to the hazy, relatively featureless atmosphere of Uranus, Neptune's atmosphere is notable for its active and visible weather patterns. For example, at the time of the 1989 Voyager 2 fly by, the planet's southern hemisphere possessed a Great Dark Spot comparable to the Great Red Spot on Jupiter. These weather patterns are driven by the strongest sustained winds of any planet in the Solar System, with recorded wind speeds as high as 2,100 kilometers per hour (1,300 mph). Because of its great distance from the Sun, Neptune's outer atmosphere is one of the coldest places in the Solar System, with temperatures at its cloud tops approaching −218 °C (55 K). Temperatures at the planet's centre are approximately 5,400 K (5,000 °C).  Neptune has a faint and fragmented ring system (labeled 'arcs'), which may have been detected during the 1960s but was only indisputably confirmed in 1989 by Voyager 2.